# http://www.danieldsjoberg.com/gtsummary/articles/tbl_summary.html
# Select screening variables
qn_data %>% select(group, sex, sibs, age, wink_ind, PPVT_perc, CPM, T_Self_Report, train_weeks)
qn_data_demog =
# Rename groups
$group = dplyr::recode(qn_data_demog$group,
qn_data_demogCG = "Controls", TG = "Zirkus Empathico")
# Apply labels
apply_labels(qn_data_demog,
qn_data_demog =sex = "Sex",
sibs = "Siblings",
age = "Age (years)",
wink_ind = "SES (Winkler index)",
PPVT_perc = "Verbal age (PPVT percentiles)",
CPM = "Nonverbal IQ (CPM)")
# Make SES categorical variable
$wink_ind = factor(qn_data_demog$wink_ind)
qn_data_demog
# Prepare table
demog_table = tbl_summary(
qn_data_demog,by = group, # split table by group
type = c(age, PPVT_perc, CPM) ~ "continuous",
statistic = list(all_continuous() ~ "{mean} ({sd})", # descriptives definition
all_categorical() ~ "{n} / {N} ({p}%)"),
digits = all_continuous() ~ 2,
missing = "no" # don't list missing data separately
%>%
) add_n() %>% # add column with total number of non-missing observations
#add_p() %>% # test for a difference between groups
modify_header(label = "**Variable**") %>% # update the column header
bold_labels()
# Print table
demog_table
Variable | N | Controls, N = 381 | Zirkus Empathico, N = 361 |
---|---|---|---|
Sex | 74 | ||
Female | 18 / 38 (47%) | 16 / 36 (44%) | |
Male | 20 / 38 (53%) | 20 / 36 (56%) | |
Siblings | 74 | ||
0 | 4 / 38 (11%) | 7 / 36 (19%) | |
1 | 25 / 38 (66%) | 18 / 36 (50%) | |
2 | 8 / 38 (21%) | 7 / 36 (19%) | |
3 | 1 / 38 (2.6%) | 3 / 36 (8.3%) | |
4 | 0 / 38 (0%) | 1 / 36 (2.8%) | |
Age (years) | 74 | 5.10 (0.90) | 5.12 (0.80) |
wink_ind | 74 | ||
5 | 1 / 38 (2.6%) | 0 / 36 (0%) | |
6 | 0 / 38 (0%) | 1 / 36 (2.8%) | |
8 | 2 / 38 (5.3%) | 1 / 36 (2.8%) | |
9 | 2 / 38 (5.3%) | 1 / 36 (2.8%) | |
10 | 5 / 38 (13%) | 5 / 36 (14%) | |
11 | 7 / 38 (18%) | 4 / 36 (11%) | |
12 | 5 / 38 (13%) | 7 / 36 (19%) | |
13 | 8 / 38 (21%) | 9 / 36 (25%) | |
14 | 6 / 38 (16%) | 6 / 36 (17%) | |
15 | 2 / 38 (5.3%) | 2 / 36 (5.6%) | |
Verbal age (PPVT percentiles) | 74 | 68.45 (24.79) | 68.39 (24.95) |
Nonverbal IQ (CPM) | 74 | 14.79 (3.73) | 13.92 (3.43) |
T_Self_Report | 71 | 323.76 (127.95) | 351.21 (122.52) |
train_weeks | 74 | 7.09 (0.90) | 6.98 (1.27) |
1
n / N (%); Mean (SD)
|
Note. SES = socioeconomic status (Winkler & Stolzenberg, 1998, range: 3-15, low SES = 3-6, medium SES = 7-10, high SES = 11-15), PPVT = Peabody Picture Vocabulary Test, CPM = Coloured Progressive Matrices.
tadaa_t.test(data = qn_data, response = T_Self_Report, group = group, print = "markdown")
# Get session info
sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18362)
Matrix products: default
locale:
[1] LC_COLLATE=German_Germany.1252 LC_CTYPE=German_Germany.1252
[3] LC_MONETARY=German_Germany.1252 LC_NUMERIC=C
[5] LC_TIME=German_Germany.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] tadaatoolbox_0.17.0 miceadds_3.11-6 mice_3.13.0
[4] gtsummary_1.4.0 expss_0.10.7 eeptools_1.2.4
[7] XLConnect_1.0.3 forcats_0.5.1 stringr_1.4.0
[10] dplyr_1.0.5 purrr_0.3.4 readr_1.4.0
[13] tidyr_1.1.3 tibble_3.1.1 ggplot2_3.3.3
[16] tidyverse_1.3.1 kableExtra_1.3.4
loaded via a namespace (and not attached):
[1] minqa_1.2.4 colorspace_2.0-0 rio_0.5.26
[4] class_7.3-18 ellipsis_0.3.1 htmlTable_2.1.0
[7] base64enc_0.1-3 fs_1.5.0 gld_2.6.2
[10] proxy_0.4-25 rstudioapi_0.13 mvtnorm_1.1-1
[13] fansi_0.4.2 lubridate_1.7.10 xml2_1.3.2
[16] splines_4.0.2 rootSolve_1.8.2.1 knitr_1.32
[19] pixiedust_0.9.1 Formula_1.2-4 jsonlite_1.7.2
[22] nloptr_1.2.2.2 gt_0.2.2 rJava_0.9-13
[25] broom_0.7.6 cluster_2.1.2 dbplyr_2.1.1
[28] png_0.1-7 compiler_4.0.2 httr_1.4.2
[31] backports_1.2.1 assertthat_0.2.1 Matrix_1.3-2
[34] cli_2.4.0 formatR_1.9 htmltools_0.5.1.1
[37] tools_4.0.2 lmom_2.8 coda_0.19-4
[40] gtable_0.3.0 glue_1.4.2 Rcpp_1.0.6
[43] carData_3.0-4 cellranger_1.1.0 jquerylib_0.1.3
[46] vctrs_0.3.7 svglite_2.0.0 nlme_3.1-152
[49] broom.helpers_1.3.0 lmtest_0.9-38 xfun_0.22
[52] openxlsx_4.2.3 lme4_1.1-26 rvest_1.0.0
[55] lifecycle_1.0.0 statmod_1.4.35 MASS_7.3-53.1
[58] zoo_1.8-9 scales_1.1.1 hms_1.0.0
[61] expm_0.999-6 RColorBrewer_1.1-2 curl_4.3
[64] Exact_2.1 yaml_2.2.1 gridExtra_2.3
[67] sass_0.3.1 rpart_4.1-15 latticeExtra_0.6-29
[70] stringi_1.5.3 highr_0.9 maptools_1.1-1
[73] e1071_1.7-6 checkmate_2.0.0 zip_2.1.1
[ reached getOption("max.print") -- omitted 45 entries ]